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Gaussian tricritical behavior of heat capacity at the smecticA—smecticC liquid crystal
transition in a racemic mixture of 4-(1-methylheptyloxycarbonyl)phenyl
4'-octyloxybiphenyl-4-carboxylate
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High resolution ac calorimetric measurements have been carried out near the Fwextiectic€ phase
transition in a racemic mixture of @&-methylheptyloxycarbonybhenyl 4 -octyloxybiphenyl-4-carboxylate.
The heat capacity data show a distinct pretransitional excess above the transition temperature as well as below
it. The data have been analyzed in detail with the renormalization-group expression with correction-to-scaling
terms. It was found that the data show Gaussian tricritical behavior. It was also found that the present data
support the first-order correction exponeéut to have a value 0.5. The value of nonuniversal amplitude ratio
A7/A*, and the possibility of the existence of the logarithmic corrections have also been discussed.
[S1063-651%97)11801-3

PACS numbg(s): 64.70.Md, 61.30-v, 64.60.Fr, 65.20-w

[. INTRODUCTION Here SmA is a paraelectric phase, S@t-is a ferroelectric
phase, SnE€% and SmEy are antiferroelectric phases,

The liquid crystalline smectié—smecticE (SmA-Sm-  Sm<C?¥ is a ferrielectric phase, ardstands for the isotropic
C) transition and the smectié—chiral-smecticS (Sm-C*)  phase. On the other hand, a racemic mixture of MHPOBC
transition are theoretically classified into the three-shows a different phase transition sequeficy:
dimensional(3D) XY universality clasg1]. Therefore, the
study of critical behavior at the Sth—Sm-C (or C*) transi- 386 K 394 K 420 K
tions is an active area of research. Early experimental studies Sm-Cp < SM-C < SM-A < |.
revealed that these transitions exhibit classic mean-field be-

havior and are well described by the extended Landat’f‘ racemic mixture does not have chirality as a whole, and

theory, which includes up to a sixth-order term in the tilt each smectic layer does not exhibit net polarization. Because

order paramete(see Refs[2-5|, and also references cited of this_, the_ above St pha_se_is not a ferroelectric_ but a
therein. ferrodistortive phase, and similarly the Siyp- phase is an

On the other hand, we recently found that the&ntiferrodistortive phase. It was found that the Shphase
heat capacity of 441-methylheptyloxycarbonyphenyl —and the SnC’; phase diminish iq optica}lly impyre systems
4’ -octyloxybiphenyl-4-carboxylate (MHPOBC) [6] and _[11], which mdmatt_as that the dipolar interactions play an
some related material3,8] show a clear deviation from the important role in this system. o
Landau behavior at S®A—Sm<C* transition. Here, the Sm- In this paper we report the results of ac calorimetric mea-
C* phase is an antiferroelectric version of the Sth-phase, ~Surements on a racemic mixture of MHPORBL2]. The re-

It was also found that the observed heat capacity anomalied!tS described below reveal that the heat capacity shows

are described by the 3IXY renormalization expression significant critical behavior at the Sk-Sm<C transition.
near T,, and show a crossover to tricritical behavior. Moreover, the.present_ system 1s a clear _exam.plle. of a Sm-
Reed etal. [9] reported that the heat capacity A-Sm<C transition which exhibits Gaussian tricritical be-

near the SMA-SmC transition of 5n-decyl-2{4- havior. The data have been analyzed in detail with the
n-(perfluoropentyl-metheleneoky pheny pyrimidine renormalization-group expression with correction-to-scaling

(H10F5MOPP shows a non-Landau, aimost tricritical be- terms. It was found that the present data support the first-
havior. These examples show that the 8mSm-C (or order cor_rectlon equneml tq h_ave+a value 0.5. T_hg_value
C*) transition can really exhibit theoretically expected non-Of Nonuniversal amplitude ratia /A"~ and the possibility of
Landau critical behavior, and therefore it is of special interesf"® €Xistence of the logarithmic corrections have also been
to search for further similar examples. discussed.

Optically pure MHPOBC shows the following sequence

of phase transition&]_o]: II. METHOD AND RESULTS
The heat capacity was measured using an ac calorimeter
391.6 K 392.4 K with basically the same setup as described elsewhere
SmC; < Sm-C} < Sm<C* [6,13,14. Hermetically sealed gold cells that contained

30-50 mg of liquid crystal sample were used. Temperature

scan rate was about 0.03 K/h in the transition region. Mea-

394.1 K 395.2 K 421 K surements were made on two sample cells, including several
< SmC, < SmA < I. heating and cooling runs for each of them, which gave an
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FIG. 1. Overall temperature dependence of the heat capacity 0 . . X ) . L0
C,, for a racemic mixture of MHPOBC. The dashed line shows the 394 304.2 394.4
background heat capacity. T (K

exce”ent reproducibility. A Very SIOW dl’lft rate in the tran- FIG. 3. A Comparison of heatin@josed Circ|e)5 and Coo|ing
sition temperature of about 0.004 K/d ensured the high (open circles data near the S'A—Sm<C transition temperature.
quality of the sample.

Figure 1 shows the overall temperature dependence of theot agree with each other near the transition temperature.
heat capacityC,. A large anomaly is seen at the Sm- Such examples are seen in Fig. 1 of R&f], and Fig. 6 of
A-Sm<C transition located at 394.2 K. The dashed line inRef. [16]. Figure 3 shows a comparison of typical heating
Fig. 1 shows the normal background part of the heat capacitgnd cooling data near the heat capacity peak obtained in the
determined as a linear function of the temperature, whiclpresent study. It is seen that the heating and cooling data
smoothly joins the observed data at temperatures far awaggree quite well. In the ac calorimetry, the existence of the
from the transition on the both sides. After subtracting thetwo-phase coexistence region at the first-order transition is
normal part, the excess heat capadit, has been plotted often detected as an abrupt change in the phase shift of the ac
in the vicinity of the SmMA—-Sm<C transition in Fig. 2. Itis temperature respongsee Fig. 5 of Refl17]). However, the
seen that the heat capacity shows significant divergent chaphase shift in the present measurement remained unchanged
acter onboth sides of the transition temperature. In particu- within 0.005 rad near the transition. After all, we conclude
lar, the existence of such divergent excess above the tranghat the present data show no first-order nature within the
tion temperature clearly indicates that this transition is not oexperimental resolution.
the mean-field type.

Since we will discuss below the ftricritical nature of the . DATA ANALYSIS
present transition, whether any indication of first-order char-
acter exists or not should be checked carefully. Generally, Firstly, theAC, data have been analyzed with the follow-
the most typical manifestation of the first-order transition ising ~ renormalization-group  expression including the
the thermal hysteresis, where the heating and cooling data direction-to-scaling termisi8]:

AC,=A"|t|*(1+D7|t|*1)+B,, (1)

0.8 —T—— —
wheret=(T—-T.)/T, is the reduced temperature, and the
superscriptst denote above and beloW,. The exponent
a was adjusted freely in the least-squares fitting procedure.
The correction-to-scaling exponedy is actually dependent
- on the universality class, but has a theoretically predicted
value quite close to 0.8.524 for 3DXY, and 0.496 for 3D
Ising model[18]). Therefore, we fixed its value at 0.5 in this
fitting procedure. There is usually a narrow region very close
to T. where data are artificially rounded due to impurities or
instrumental effects. The extent of this region was carefully
determined in the way described elsewhgt8], and data
inside this region were excluded in the fitting. Typically, the
rounding region thus determined is—4x107°
<t<+1x10 °. Fits were made for the data over three
ranges,|t| max = 0.001, 0.003, and 0.01, whelt . is the
maximum value oft| used in the fit. The first three lines in
FIG. 2. Detailed view of the excess heat capadify, near the ~ Table | show the values of the critical exponentthe criti-
Sm-A—-Sm<C phase transition for a racemic mixture of MHPOBC. cal amplitude ratioA™/A*, and other adjustable parameters
Solid line shows the theoretical tricritical fit with E¢B). thus obtained. It is seen that the fits yieldsalues very close

0.6
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TABLE |. Least-squares values of the adjustable parameters for filtidgwith Egs.(1) and(2). Here
AB=B*—B". For the fits with Eq(1), B, is shown in place oB*. The number of data points ustddwas
209, 550, and 1481 fdt| . = 0.001, 0.003, and 0.01, respectively. The number of degrees of freed®m
given asv=N-—p, wherep is the number of free parameters. Quantities in brackets were held fixed at the
given values. The units foh*, B*, andAB are JK 1 g~ 2.

EQ.  |t|max Te (K) a 10°AT ATIAT A Dy D; B* AB )2

1 0.001 394232 0.494 552 9.16 [0.5] —221.0 —-285 0.134 [0] 0.98
1 0.003 394.233 0528 245 1420[05] 8375 572 -0226 [0] 1.14
1 0.010 394.233 0.516 2.91  13.46[0.5] 1337 969 —0.413 [0] 0.97
1 0.001 394.232 [0.5] 4.85 9.80 048 1501  11.7 —0.065 [0] 0.98
1 0.003 394.232 [0.5] 4.18 11.13 045 1636 122 —0.078 [0] 1.29
1 0.010 394.232 [0.5] 4.45 1025 054 —379.5 —-40.6 0.146 [0] 1.02
2 0.001 394.232 [0.5] 5.29 9.03 [0.5] 0.018 0.019 1.06
2 0.003 394.232 [0.5] 5.86 8.16 [0.5] 0.013 0.016 2.88
2 0.010 394.232 [0.5] 6.46 7.60 [0.5] 0.007 0.016 5.65

to the tricritical value 0.5. Thus we see that the present datthe theoretically calculated smooth curve is satisfactory. The
show nonclassicalGaussiantricritical behavior in contrast presentD, values are in a qualitative agreement with those
with the Landau tricritical behavior reported so far on someobtained for the tricritical nematic—S#y transition[16,22]
Sm-A-Sm<C transitions[4,15]. We also note that the inclu- in the sense thaD, <0. However,D, /D, = 0.1 for the
sion of the correction-to-scaling term is crucial in describingpresent results is further away from the theoretical expecta-
the present data. In fact, neglecting the¢ term in Eq.(1)  tion D; =D, and in the opposite direction in comparison
resulted in very poor fitsy’ = 5.8, 14.5, and 33.3 for with the nematic—Sn#, transition, whereD, /D; = 2.6—
[t|max = 0.001, 0.003, and 0.01, respectively. 5.0.

Tricritical fits. We next fitted the data fixingr at the Fits with logarithmic correctionsLogarithmic corrections
tricritical value 0.5, whileA; was adjusted freely. The ob- are theoretically expected at tricritical points since the upper
tained parameters are shown in the fourth to sixth lines inmarginal dimension, is 3. We tried fits with the following
Table I. It is seen that the obtainéd value lies close to 0.5. asymptotic heat capacity variation as predicted by Lawrie
A slight increase in the\; value for larger|t|, may be and Sarbach16,23:
ascribed to the effect from the second-order correction term,
which has the exponent of around[20,21]. If we assume ACp:Ai|t|‘1’2(1+ L*Int))9+B,, (4)
that A, is exactly equal to 0.5, still having = 0.5, the
correction-to-scaling term in Eq1) merges with the con- where = —6(n+4)/(3n+22)=—9/7 for an XY model
stant termB.. As a result, we can rewrite E¢l) as (n=2). This fitting should be done carefully for the follow-

AC,=A*[t|~ V24 B* @ ing reasons:(A) Because of its weak temperature depen-
p ' dence, the temperature range of the used data should be as
whereB*=B,+A*D? andAB=B*—B~#0. The seventh ¥vide as possiblgB) On the other hand, i_f the data relatively
ar away fromT. are used, the correction-to-scaling terms
should be added, which makes accurate estimate of the loga-
rithmic terms difficult. From poin{B), it is better to limit
[t| max Within 0.001 or so. Even in these cases, however, the
results described above show that at least the first-order
correction-to-scaling term should be included. In a similar
manner of obtaining Eq2), we thus allow the constant term
ACp:Ai|t|71/2(1+D££|t|)+Bi. 3) B. to be ingependgnt for above and beld'\@r/, Wr_1ich we
denote aB™ andB~. We further assumed™=L". As a
Table 1l shows the obtained parameter values. Becaus@sult, we obtained. = —0.008 for t| . = 0.001 with x’
higher-order correction terms are expected to have signifi=0.99. Other parameters aré™=5.929<10"4 A~
cant influence away froffi,, only the result fott|,,=0.01  =5.298<10 3 B = 0.017, andB~ = —0.007(in J/g K).
is shown. In Fig. 2, the solid curve shows the theoretical fitSince the improvement of the fit is only slight compared with
with Eq. (3). The agreement between the observed data anthe case without the logarithmic correctiop? = 1.06, we

through ninth lines in Table | show the results of fits with Eq.
(2). The fit is quite good fonft| 4 = 0.001 but becomes
clearly worse fort| .« = 0.003 and 0.01.

Fits were also tried with an equation including both first-
and second-order correction terris6,18,20. Adding the
second-order term to E@2), we have

TABLE |l. Least-squares values of the adjustable parameters for fitig with Eq. (3). Here,
AB=B"'—B". The units forA*, B*, andAB are JK 1 g1,

Eq. [tlnax ~ Te (K)  10°AT  AT/AY D, D, BY AB %

3) 0.01 394.232 5.27 896 —3383 —30.8 0.021 0.004 1.02
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see that the logarithmic correction is still not significant in IV. DISCUSSION

the present temperature range. It was found that thelue Theoretically, the critical exponents are expected to have

is relatively stable against data-range shrinkibg; —0.012 classical values for the tricritical transition. While the expo-

o o2, Q055 008 fr = 00005 ang amgrties v bn s o

with the existence of small but nonzero logarithmic correc-. oY experiments on various tricritical transitions, the ex-
tion 9 perimental examination of the correction-to-scaling terms

Classical and quasiclassical fit¥he existence of distinct has been made in only limited cases. As for liquid crystal

excess heat capacity aboVg in the present case automati- systems, Stine and Garlafith] reported that choosing, to

cally prevents one from fitting the data with the extended.be around 1 resulted in inferior fits than those with = 0.5

. . in their analyses on tricritical nematic—Sfnsystems. Our
Landau theory, which predicts no excess aboye Never- esent result gives another direct evidence thafor the
theless, we describe here briefly the results of the extend i) g 3

. - . . .~ ricritical transition has a classical value (Zb].
Landau fits for a quantitative comparison with the scaling It is known that the tricritical amplitude ratid—/A* is
fits. The expression used is P

not universal over experimentally accessiljle ranges.
Fisher and Sarbadl26] showed that the tricritical amplitude
-1 ratios in an exactly solvable sphericah=>) model are
) +Be (5)  functions of the single variable=(a/R,)%, wherea is the
lattice spacing and, is the range of interaction. Their re-
sults yield A"/AT=(1—27z%)Y?z, so that as the interaction
for T<T,., and range becomes infinitely large,goes to zero and therefore
A~/A™ goes to infinity, recovering the Landau behavior. The
value ofA~/A* obtained in the present work shown in Table
AC,=B; (6)  llyields z = 0.11. For tricritical nematic—Sm-transitions,
it was found thatz = 0.530 in nonpolar mixtures, and

. , i , z=0.707 in polar cyanobiphenyld16]. Other examples
for T>T.. The definition oft, here is consistent with that by \\ herez values are reported are= 0.12 for 3He-*He, and

Reedet al. [9], andt,>0. When the same rounding region ,_q 21 for themetamagnet DyAl (O, [dysprosium alu-

ag above is assumed, the fits turned out to be Very poominym gamet(DAG)] [26]. The present system is less re-
X,= 110 with |t|2,=0.003, for example. We also tried fits moyed from the classical Landau tricriticality than nematic—
assuming wider rounding region. Even when the data in ama systems, and almost the same3te-*He and DAG.
rangeT,—0.05 K<T<Ty + 0.3 K (Ty, is the temperature | particular, we now have three different tricriticalities in
of AC, maximum) ha\ée been excluded in the fitting, the fit liquid crystals, the one in nematic—SMsystems is most
was still not good,y;=18.7 for |t[yn,=0.003. Thus we different from the classical Landau behavior, the traditional
Clearly see that the present heat anomaly is |nC0mpat|b|gmA_Sm.C (Or C*) systems shows pure|y classical behav-
with the extended Landau theof4]. ior, and the present case of racemic MHPOBC lies in be-
We also tried quasiclassical fits used by Reedl. for  tween. We also note that the smallness of the logarithmic
analyzing the data on HIOFSMOPP for the cases of finite:orrection amplitude. can be explained by the prediction
and infinite Sample tthkne$§] The heat anomaly consists L oc 72 expected in the mu|ticomponent ||n['|26]
of a Landau part and a correction term of the Gaussian type. The o value obtained in the fits with Eq1) agrees re-
For the infinite thickness sample it becomes markably well with the tricritical value 0.5, especially for
small |t| hax- Further, thety value obtained in the quasiclas-
iy T2 sical fits with Eqs(7) and(8) was very close to 0. We found
+A‘(—) t|"¥2+B, (7) that |to| <1078 for |t|max = 0.001. This value is much
Te smaller, for example, thant,=10"° reported for
H10F5MOPHM9]. When the transition is not exactly tricriti-
cal and the quartic term in the free energy has small but
nonzero coefficient, the crossover from tricritical to normal
critical behavior is expected. For smallthe crossover func-
T)\2 tion as discussed by Rudnick and Nels@v,28 can be
ACp=A+<T—> |t|~ Y2+ B, (8) expanded, and yields a correction with an exponet?2.
¢ We therefore tried fits adding a correction tebyj |t| ~ 2 to
Eq. (2,
for T>T.. We used the same assumption made by Reed
et al. [9] that A-=2Y2A". The fits were still rather poor, AC,=A*[t| Y21+ D[t|"¥) +B*. ©)
x2=5.5 for |t|ma=0.001, with A, = 3.60<10 % J/gK, P !
A" = 6.42x10 % Jig K, B, = 0.0108 J/g K, and, was
practically zero [to| <10™8). This result indicates that in the AS for [t|ma = 0.001, we obtainedy’ = 0.92, D
present data the fluctuation effect is so significant that it can=—8.8X 1074 and D, =6.8x10"*. The improvement of
not be viewed as a small correction to the classical behavidthe fit is slightly better than the case of including the loga-
as in Eq.(7). rithmic correction. However, this improvement seems artifi-

0
+_
t]+

T
ACP:ALT_C

for T<T., and
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cial at first becaus®, /D <0 while it is thoretically ex- MHPOBC is second orddr0], but the nature of the transi-
pected thatD_/D;>0. Further, parameter values were tion close to but some way from the racemic point is not
found to be unstable against data-range shrinking. For exclearly known. Anyway, such situations will be clarified by a
ample,D for |t|max = 0.0005 is about 4.5 times larger than systematic detailed study of the phase diagram in the present
that for |t| s = 0.002. To summarize these facts, we con-SyStem.

clude that the transition in the present system is extremel{ In a few cases it was found that the heat capacity shows
close to the tricritical point. andau behavior while the ultrasonic velocity shows non-

A racemic mixture represents a very special position in d-andau behaviorf30,31]. Benguigui and Martinoty[30]
mixture system of two enantiomers where the chirality of theclaim that the critical region for the St—Sm-<C transition
total system vanishes. Therefore, it seems quite improbabi§ dependent on the observable property studied, and they
that the tricriticality would fall on the racemic point just by assert that the heat.capacn.y is Iess sensitive to.fluctuatlon
chance. Quite interestingly, one further example is knowreffects than ultrasonic veIocm_es. Itis therefqre of interest to
where a racemic mixture exhibits a tricritical behavior at theStudy elastic constants of chiral and racemic MHPOBC. In
SmA-Sm<C transition: 4-(3-methyl-2-chlorobutanoylosy particular, since thelr_a_rgument is based on _the difference of
4’ -heptyloxybiphenyl(A7) [15]. On the contrary, racemic the fourth-order coefﬂmem in Fhe free energies expressed as
2-methylbuthyl-4-n-pentyloxybiphenyl-4-carboxylate strain gnd as stress, the tI’ICI’ItI.CBJ case vv.hen.the _fourth—order
(2M450BQO showed an ordinary second-order transitioncoefficient vanishes may provide a special situation.
[29]. Although we do not have any theoretical reasoning, it is
conceivable that the transition in a racemic mixture is driven
to a tricritical one due to some symmetrical reason when a
certain requirement is satisfied. The difference between the We wish to thank Professor H. Takezoe for supplying us
above two cases is that the transition is first order in chiralvith high-quality MHPOBC samples. We are also grateful to
(nonracemit A7, while it is second-order in case of Professor C. W. Garland and Professor A. Aharony for help-
2M450BC. The SmA-Sm<C?¥ transition in optically pure ful discussions.
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