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Gaussian tricritical behavior of heat capacity at the smectic-A–smectic-C liquid crystal
transition in a racemic mixture of 4-„1-methylheptyloxycarbonyl…phenyl

48-octyloxybiphenyl-4-carboxylate

Kenji Ema, Atsushi Takagi, and Haruhiko Yao
Department of Physics, Faculty of Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro, Tokyo, 152 Japa

~Received 11 September 1996!

High resolution ac calorimetric measurements have been carried out near the smectic-A–smectic-C phase
transition in a racemic mixture of 4-~1-methylheptyloxycarbonyl!phenyl 48-octyloxybiphenyl-4-carboxylate.
The heat capacity data show a distinct pretransitional excess above the transition temperature as well as below
it. The data have been analyzed in detail with the renormalization-group expression with correction-to-scaling
terms. It was found that the data show Gaussian tricritical behavior. It was also found that the present data
support the first-order correction exponentD1 to have a value 0.5. The value of nonuniversal amplitude ratio
A2/A1, and the possibility of the existence of the logarithmic corrections have also been discussed.
@S1063-651X~97!11801-3#

PACS number~s!: 64.70.Md, 61.30.2v, 64.60.Fr, 65.20.1w
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I. INTRODUCTION

The liquid crystalline smectic-A–smectic-C ~Sm-A–Sm-
C) transition and the smectic-A–chiral-smectic-C ~Sm-C* !
transition are theoretically classified into the thre
dimensional~3D! XY universality class@1#. Therefore, the
study of critical behavior at the Sm-A–Sm-C ~or C* ! transi-
tions is an active area of research. Early experimental stu
revealed that these transitions exhibit classic mean-field
havior and are well described by the extended Lan
theory, which includes up to a sixth-order term in the
order parameter~see Refs.@2–5#, and also references cite
therein!.

On the other hand, we recently found that t
heat capacity of 4-~1-methylheptyloxycarbonyl!phenyl
48-octyloxybiphenyl-4-carboxylate ~MHPOBC! @6# and
some related materials@7,8# show a clear deviation from th
Landau behavior at Sm-A–Sm-Ca* transition. Here, the Sm
Ca* phase is an antiferroelectric version of the Sm-C* phase.
It was also found that the observed heat capacity anoma
are described by the 3DXY renormalization expressio
near Tc , and show a crossover to tricritical behavio
Reed et al. @9# reported that the heat capaci
near the Sm-A–Sm-C transition of 5-n-decyl-2-@4-
n-~perfluoropentyl-metheleneoxy! phenyl# pyrimidine
~H10F5MOPP! shows a non-Landau, almost tricritical b
havior. These examples show that the Sm-A–Sm-C ~or
C* ! transition can really exhibit theoretically expected no
Landau critical behavior, and therefore it is of special inter
to search for further similar examples.

Optically pure MHPOBC shows the following sequen
of phase transitions@10#:

Sm-CA* ↔
391.6 K

Sm-Cg* ↔
392.4 K

Sm-C*

↔
394.1 K

Sm-Ca* ↔
395.2 K

Sm-A ↔
421 K

I .
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Here Sm-A is a paraelectric phase, Sm-C* is a ferroelectric
phase, Sm-Ca* and Sm-CA* are antiferroelectric phases
Sm-Cg* is a ferrielectric phase, andI stands for the isotropic
phase. On the other hand, a racemic mixture of MHPO
shows a different phase transition sequence@11#:

Sm-CA ↔
386 K

Sm-C ↔
394 K

Sm-A ↔
420 K

I .

A racemic mixture does not have chirality as a whole, a
each smectic layer does not exhibit net polarization. Beca
of this, the above Sm-C phase is not a ferroelectric but
ferrodistortive phase, and similarly the Sm-CA phase is an
antiferrodistortive phase. It was found that the Sm-Ca* phase
and the Sm-Cg* phase diminish in optically impure system
@11#, which indicates that the dipolar interactions play
important role in this system.

In this paper we report the results of ac calorimetric m
surements on a racemic mixture of MHPOBC@12#. The re-
sults described below reveal that the heat capacity sh
significant critical behavior at the Sm-A–Sm-C transition.
Moreover, the present system is a clear example of a S
A–Sm-C transition which exhibits Gaussian tricritical be
havior. The data have been analyzed in detail with
renormalization-group expression with correction-to-scal
terms. It was found that the present data support the fi
order correction exponentD1 to have a value 0.5. The valu
of nonuniversal amplitude ratioA2/A1 and the possibility of
the existence of the logarithmic corrections have also b
discussed.

II. METHOD AND RESULTS

The heat capacity was measured using an ac calorim
with basically the same setup as described elsewh
@6,13,14#. Hermetically sealed gold cells that containe
30–50 mg of liquid crystal sample were used. Temperat
scan rate was about 0.03 K/h in the transition region. M
surements were made on two sample cells, including sev
heating and cooling runs for each of them, which gave
508 © 1997 The American Physical Society
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55 509GAUSSIAN TRICRITICAL BEHAVIOR OF HEAT . . .
excellent reproducibility. A very slow drift rate in the tran
sition temperature of about20.004 K/d ensured the high
quality of the sample.

Figure 1 shows the overall temperature dependence o
heat capacityCp . A large anomaly is seen at the Sm
A–Sm-C transition located at 394.2 K. The dashed line
Fig. 1 shows the normal background part of the heat capa
determined as a linear function of the temperature, wh
smoothly joins the observed data at temperatures far a
from the transition on the both sides. After subtracting
normal part, the excess heat capacityDCp has been plotted
in the vicinity of the Sm-A–Sm-C transition in Fig. 2. It is
seen that the heat capacity shows significant divergent c
acter onboth sides of the transition temperature. In partic
lar, the existence of such divergent excess above the tra
tion temperature clearly indicates that this transition is no
the mean-field type.

Since we will discuss below the tricritical nature of th
present transition, whether any indication of first-order ch
acter exists or not should be checked carefully. Genera
the most typical manifestation of the first-order transition
the thermal hysteresis, where the heating and cooling dat

FIG. 1. Overall temperature dependence of the heat capa
Cp for a racemic mixture of MHPOBC. The dashed line shows
background heat capacity.

FIG. 2. Detailed view of the excess heat capacityDCp near the
Sm-A–Sm-C phase transition for a racemic mixture of MHPOBC
Solid line shows the theoretical tricritical fit with Eq.~3!.
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not agree with each other near the transition temperat
Such examples are seen in Fig. 1 of Ref.@15#, and Fig. 6 of
Ref. @16#. Figure 3 shows a comparison of typical heati
and cooling data near the heat capacity peak obtained in
present study. It is seen that the heating and cooling d
agree quite well. In the ac calorimetry, the existence of
two-phase coexistence region at the first-order transition
often detected as an abrupt change in the phase shift of th
temperature response~see Fig. 5 of Ref.@17#!. However, the
phase shift in the present measurement remained uncha
within 0.005 rad near the transition. After all, we conclu
that the present data show no first-order nature within
experimental resolution.

III. DATA ANALYSIS

Firstly, theDCp data have been analyzed with the follow
ing renormalization-group expression including t
correction-to-scaling terms@18#:

DCp5A6utu2a~11D1
6utuD1!1Bc , ~1!

where t[(T2Tc)/Tc is the reduced temperature, and t
superscripts6 denote above and belowTc . The exponent
a was adjusted freely in the least-squares fitting proced
The correction-to-scaling exponentD1 is actually dependen
on the universality class, but has a theoretically predic
value quite close to 0.5~0.524 for 3DXY, and 0.496 for 3D
Ising model@18#!. Therefore, we fixed its value at 0.5 in th
fitting procedure. There is usually a narrow region very clo
to Tc where data are artificially rounded due to impurities
instrumental effects. The extent of this region was carefu
determined in the way described elsewhere@19#, and data
inside this region were excluded in the fitting. Typically, th
rounding region thus determined is2431025

,t,1131025. Fits were made for the data over thre
ranges,utumax 5 0.001, 0.003, and 0.01, whereutumax is the
maximum value ofutu used in the fit. The first three lines i
Table I show the values of the critical exponenta, the criti-
cal amplitude ratioA2/A1, and other adjustable paramete
thus obtained. It is seen that the fits yielda values very close

ity
e

FIG. 3. A comparison of heating~closed circles! and cooling
~open circles! data near the Sm-A–Sm-C transition temperature.
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TABLE I. Least-squares values of the adjustable parameters for fittingDCp with Eqs.~1! and ~2!. Here
DB5B12B2. For the fits with Eq.~1!, Bc is shown in place ofB

1. The number of data points usedN was
209, 550, and 1481 forutumax 5 0.001, 0.003, and 0.01, respectively. The number of degrees of freedomn is
given asn5N2p, wherep is the number of free parameters. Quantities in brackets were held fixed a
given values. The units forA1, B1, andDB are J K21 g21.

Eq. utumax Tc ~K! a 104A1 A2/A1 D1 D1
1 D1

2 B1 DB xn
2

1 0.001 394.232 0.494 5.52 9.16 @ 0.5 # 2221.0 228.5 0.134 @0# 0.98
1 0.003 394.233 0.528 2.45 14.20 @ 0.5 # 837.5 57.2 20.226 @0# 1.14
1 0.010 394.233 0.516 2.91 13.46 @ 0.5 # 1337 96.9 20.413 @0# 0.97
1 0.001 394.232 @0.5# 4.85 9.80 0.48 150.1 11.7 20.065 @0# 0.98
1 0.003 394.232 @0.5# 4.18 11.13 0.45 163.6 12.2 20.078 @0# 1.29
1 0.010 394.232 @0.5# 4.45 10.25 0.54 2379.5 240.6 0.146 @0# 1.02
2 0.001 394.232 @0.5# 5.29 9.03 @0.5# 0.018 0.019 1.06
2 0.003 394.232 @0.5# 5.86 8.16 @0.5# 0.013 0.016 2.88
2 0.010 394.232 @0.5# 6.46 7.60 @0.5# 0.007 0.016 5.65
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to the tricritical value 0.5. Thus we see that the present d
show nonclassical~Gaussian! tricritical behavior in contrast
with the Landau tricritical behavior reported so far on so
Sm-A–Sm-C transitions@4,15#. We also note that the inclu
sion of the correction-to-scaling term is crucial in describi
the present data. In fact, neglecting theD1

6 term in Eq.~1!
resulted in very poor fits,xn

2 5 5.8, 14.5, and 33.3 for
utumax 5 0.001, 0.003, and 0.01, respectively.

Tricritical fits. We next fitted the data fixinga at the
tricritical value 0.5, whileD1 was adjusted freely. The ob
tained parameters are shown in the fourth to sixth lines
Table I. It is seen that the obtainedD1 value lies close to 0.5
A slight increase in theD1 value for largerutumax may be
ascribed to the effect from the second-order correction te
which has the exponent of around 1@20,21#. If we assume
that D1 is exactly equal to 0.5, still havinga 5 0.5, the
correction-to-scaling term in Eq.~1! merges with the con-
stant termBc . As a result, we can rewrite Eq.~1! as

DCp5A6utu21/21B6, ~2!

whereB65Bc1A6D1
6 andDB[B12B2Þ0. The seventh

through ninth lines in Table I show the results of fits with E
~2!. The fit is quite good forutumax 5 0.001 but becomes
clearly worse forutumax 5 0.003 and 0.01.

Fits were also tried with an equation including both fir
and second-order correction terms@16,18,20#. Adding the
second-order term to Eq.~2!, we have

DCp5A6utu21/2~11D2
6utu!1B6. ~3!

Table II shows the obtained parameter values. Beca
higher-order correction terms are expected to have sig
cant influence away fromTc , only the result forutumax50.01
is shown. In Fig. 2, the solid curve shows the theoretica
with Eq. ~3!. The agreement between the observed data
ta

e

n

,

.

se
fi-

t
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the theoretically calculated smooth curve is satisfactory. T
presentD2

6 values are in a qualitative agreement with tho
obtained for the tricritical nematic–Sm-A1 transition@16,22#
in the sense thatD2

6,0. However,D2
2/D2

1> 0.1 for the
present results is further away from the theoretical expe
tion D2

15D2
2 and in the opposite direction in compariso

with the nematic–Sm-A1 transition, whereD2
2/D2

1> 2.6–
5.0.

Fits with logarithmic corrections.Logarithmic corrections
are theoretically expected at tricritical points since the up
marginal dimensiondu is 3. We tried fits with the following
asymptotic heat capacity variation as predicted by Law
and Sarbach@16,23#:

DCp5A6utu21/2~11L6lnutu!q1Bc , ~4!

where q526(n14)/(3n122)529/7 for an XY model
(n52). This fitting should be done carefully for the follow
ing reasons:~A! Because of its weak temperature depe
dence, the temperature range of the used data should b
wide as possible.~B! On the other hand, if the data relative
far away fromTc are used, the correction-to-scaling term
should be added, which makes accurate estimate of the l
rithmic terms difficult. From point~B!, it is better to limit
utumax within 0.001 or so. Even in these cases, however,
results described above show that at least the first-o
correction-to-scaling term should be included. In a simi
manner of obtaining Eq.~2!, we thus allow the constant term
Bc to be independent for above and belowTc , which we
denote asB1 andB2. We further assumedL15L2. As a
result, we obtainedL520.008 for utumax 5 0.001 withxn

2

50.99. Other parameters areA155.92931024, A2

55.29831023, B1 5 0.017, andB2 5 20.007~in J/g K!.
Since the improvement of the fit is only slight compared w
the case without the logarithmic correction,xn

2 5 1.06, we
TABLE II. Least-squares values of the adjustable parameters for fittingDCp with Eq. ~3!. Here,
DB[B12B2. The units forA1, B6, andDB are J K21 g21.

Eq. utumax Tc ~K! 104A1 A2/A1 D2
1 D2

2 B1 DB xn
2

~3! 0.01 394.232 5.27 8.96 2338.3 230.8 0.021 0.004 1.02
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see that the logarithmic correction is still not significant
the present temperature range. It was found that theL value
is relatively stable against data-range shrinking,L520.012
for utumax 5 0.002, andL520.011 for utumax 5 0.0005.
These results indicate that the present data are consi
with the existence of small but nonzero logarithmic corre
tion.

Classical and quasiclassical fits.The existence of distinc
excess heat capacity aboveTc in the present case automa
cally prevents one from fitting the data with the extend
Landau theory, which predicts no excess aboveTc . Never-
theless, we describe here briefly the results of the exten
Landau fits for a quantitative comparison with the scal
fits. The expression used is

DCp5A2
T

Tc
S utu1

t0
3 D 21/2

1Bc ~5!

for T<Tc , and

DCp5Bc ~6!

for T.Tc . The definition oft0 here is consistent with that b
Reedet al.. @9#, and t0.0. When the same rounding regio
as above is assumed, the fits turned out to be very p
xn
25110 with utumax50.003, for example. We also tried fit

assuming wider rounding region. Even when the data i
rangeTm20.05 K,T,Tm 1 0.3 K (Tm is the temperature
of DCp maximum! have been excluded in the fitting, the
was still not good,xn

2518.7 for utumax50.003. Thus we
clearly see that the present heat anomaly is incompa
with the extended Landau theory@24#.

We also tried quasiclassical fits used by Reedet al.. for
analyzing the data on H10F5MOPP for the cases of fin
and infinite sample thickness@9#. The heat anomaly consist
of a Landau part and a correction term of the Gaussian ty
For the infinite thickness sample it becomes

DCp5AL

T

Tc
S utu1

t0
3 D 21/2

1A2S TTcD
2

utu21/21Bc ~7!

for T,Tc , and

DCp5A1S TTcD
2

utu21/21Bc ~8!

for T.Tc . We used the same assumption made by R
et al. @9# that A2521/2A1. The fits were still rather poor
xn
255.5 for utumax50.001, with AL 5 3.6031023 J/g K,

A1 5 6.4231024 J/g K, Bc 5 0.0108 J/g K, andt0 was
practically zero (ut0u,1028). This result indicates that in th
present data the fluctuation effect is so significant that it c
not be viewed as a small correction to the classical beha
as in Eq.~7!.
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IV. DISCUSSION

Theoretically, the critical exponents are expected to h
classical values for the tricritical transition. While the exp
nent values of the leading singularities have been studied
many experiments on various tricritical transitions, the e
perimental examination of the correction-to-scaling ter
has been made in only limited cases. As for liquid crys
systems, Stine and Garland@16# reported that choosingD1 to
be around 1 resulted in inferior fits than those withD1 5 0.5
in their analyses on tricritical nematic–Sm-A systems. Our
present result gives another direct evidence thatD1 for the
tricritical transition has a classical value 0.5@25#.

It is known that the tricritical amplitude ratioA2/A1 is
not universal over experimentally accessibleutu ranges.
Fisher and Sarbach@26# showed that the tricritical amplitude
ratios in an exactly solvable spherical (n5`) model are
functions of the single variablez5(a/R0)

3, wherea is the
lattice spacing andR0 is the range of interaction. Their re
sults yieldA2/A15(12z2)1/2/z, so that as the interaction
range becomes infinitely large,z goes to zero and therefor
A2/A1 goes to infinity, recovering the Landau behavior. T
value ofA2/A1 obtained in the present work shown in Tab
II yields z 5 0.11. For tricritical nematic–Sm-A transitions,
it was found thatz 5 0.530 in nonpolar mixtures, an
z50.707 in polar cyanobiphenyls@16#. Other examples
wherez values are reported arez 5 0.12 for 3He-4He, and
z50.21 for themetamagnet Dy3Al 5O12 @dysprosium alu-
minum garnet~DAG!# @26#. The present system is less r
moved from the classical Landau tricriticality than nemati
Sm-A systems, and almost the same as3He-4He and DAG.
In particular, we now have three different tricriticalities
liquid crystals, the one in nematic–Sm-A systems is most
different from the classical Landau behavior, the tradition
Sm-A–Sm-C ~or C* ! systems shows purely classical beha
ior, and the present case of racemic MHPOBC lies in
tween. We also note that the smallness of the logarith
correction amplitudeL can be explained by the predictio
L}z2 expected in the multicomponent limit@26#.

The a value obtained in the fits with Eq.~1! agrees re-
markably well with the tricritical value 0.5, especially fo
small utumax. Further, thet0 value obtained in the quasiclas
sical fits with Eqs.~7! and~8! was very close to 0. We found
that ut0u,1028 for utumax 5 0.001. This value is much
smaller, for example, than t0>1025 reported for
H10F5MOPP@9#. When the transition is not exactly tricriti
cal and the quartic term in the free energy has small
nonzero coefficientu, the crossover from tricritical to norma
critical behavior is expected. For smallu, the crossover func-
tion as discussed by Rudnick and Nelson@27,28# can be
expanded, and yields a correction with an exponent21/2.
We therefore tried fits adding a correction termDu

6utu21/2 to
Eq. ~2!,

DCp5A6utu21/2~11Du
6utu21/2!1B6. ~9!

As for utumax 5 0.001, we obtainedxn
2 5 0.92, Du

1

528.831024, andDu
256.831024. The improvement of

the fit is slightly better than the case of including the log
rithmic correction. However, this improvement seems art
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cial at first becauseDu
2/Du

1,0 while it is thoretically ex-
pected thatDu

2/Du
1.0. Further, parameter values we

found to be unstable against data-range shrinking. For
ample,Du

2 for utumax 5 0.0005 is about 4.5 times larger tha
that for utumax 5 0.002. To summarize these facts, we co
clude that the transition in the present system is extrem
close to the tricritical point.

A racemic mixture represents a very special position i
mixture system of two enantiomers where the chirality of
total system vanishes. Therefore, it seems quite improb
that the tricriticality would fall on the racemic point just b
chance. Quite interestingly, one further example is kno
where a racemic mixture exhibits a tricritical behavior at t
Sm-A–Sm-C transition: 4- ~3-methyl-2-chlorobutanoyloxy!
48-heptyloxybiphenyl~A7! @15#. On the contrary, racemic
2-methylbuthyl-48-n-pentyloxybiphenyl-4-carboxylate
~2M45OBC! showed an ordinary second-order transiti
@29#. Although we do not have any theoretical reasoning, i
conceivable that the transition in a racemic mixture is driv
to a tricritical one due to some symmetrical reason whe
certain requirement is satisfied. The difference between
above two cases is that the transition is first order in ch
~nonracemic! A7, while it is second-order in case o
2M45OBC. The Sm-A–Sm-Ca* transition in optically pure
st

e
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MHPOBC is second order@10#, but the nature of the transi
tion close to but some way from the racemic point is n
clearly known. Anyway, such situations will be clarified by
systematic detailed study of the phase diagram in the pre
system.

In a few cases it was found that the heat capacity sho
Landau behavior while the ultrasonic velocity shows no
Landau behavior@30,31#. Benguigui and Martinoty@30#
claim that the critical region for the Sm-A–Sm-C transition
is dependent on the observable property studied, and
assert that the heat capacity is less sensitive to fluctua
effects than ultrasonic velocities. It is therefore of interest
study elastic constants of chiral and racemic MHPOBC.
particular, since their argument is based on the differenc
the fourth-order coefficient in the free energies expresse
strain and as stress, the tricritical case when the fourth-o
coefficient vanishes may provide a special situation.
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